Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.357
Filter
1.
BMC Plant Biol ; 24(1): 266, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600447

ABSTRACT

BACKGROUND: Mango (Mangifera indica L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)-tolerant, Tainung (T) and Guiremang No. 82 (G)-susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold. RESULTS: A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H2O2), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses. CONCLUSION: Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.


Subject(s)
Cyclopentanes , Mangifera , Oxylipins , Transcriptome , Cold-Shock Response/genetics , Mangifera/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Hydrogen Peroxide/metabolism , China , Gene Expression Profiling , Gene Expression Regulation, Plant
2.
J Hazard Mater ; 470: 134172, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569340

ABSTRACT

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Subject(s)
Boehmeria , Cadmium , Cell Wall , Vacuoles , Cadmium/toxicity , Cadmium/metabolism , Cell Wall/metabolism , Cell Wall/drug effects , Boehmeria/metabolism , Boehmeria/drug effects , Vacuoles/metabolism , Vacuoles/drug effects , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Polysaccharides/metabolism , Oxylipins/metabolism , Gene Expression Regulation, Plant/drug effects , Glucans/metabolism , Xylans/metabolism , Stress, Physiological/drug effects
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 691-701, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621873

ABSTRACT

Mentha canadensis, as a plant with medicinal and culinary uses, holds significant economic value. Jasmonic acid signaling repressor JAZ protein has a crucial role in regulating plant response to adversity stresses. The M. canadensis McJAZ8 gene is cloned and analyzed for protein characterization, protein interactions, and expression patterns, so as to provide genetic resources for molecular breeding of M. canadensis for stress tolerance. This experiment will analyze the protein structural characteristics, subcellular localization, protein interactions, and gene expression of McJAZ8 using bioinformatics, yeast two-hybrid(Y2H), transient expression in tobacco leaves, qRT-PCR, and other technologies. The results show that:(1)The full length of the McJAZ8 gene is 543 bp, encoding 180 amino acids. The McJAZ8 protein contains conserved TIFY and Jas domains and exhibits high homology with Arabidopsis thaliana AtJAZ1 and AtJAZ2.(2)The McJAZ8 protein is localized in the nucleus and cytoplasm.(3)The Y2H results show that McJAZ8 interacts with itself or McJAZ1/3/4/5 proteins to form homologous or heterologous dimers.(4)McJAZ8 is expressed in different tissue, with the highest expression level in young leaves. In terms of leaf sequence, McJAZ8 shows the highest expression level in the fourth leaf and the lowest expression level in the second leaf.(5) In leaves and roots, the expression of McJAZ8 is upregulated to varying degrees under methyl jasmonate(MeJA), drought, and NaCl treatments. The expression of McJAZ8 shows an initial upregulation followed by a downregulation pattern under CdCl_2 treatment. In leaves, the expression of McJAZ8 tends to gradually decrease under CuCl_2 treatment, while in roots, it initially decreases and then increases before decreasing again. In both leaves and roots, the expression of McJAZ8 is downregulated to varying degrees under AlCl_(3 )treatment. This study has enriched the research on jasmonic acid signaling repressor JAZ genes in M. canadensis and provided genetic resources for the molecular breeding of M. canadensis.


Subject(s)
Cyclopentanes , Gene Expression Profiling , Mentha , Oxylipins , Transcription Factors/genetics , Transcription Factors/metabolism , Computational Biology , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Phylogeny , Stress, Physiological/genetics
4.
Physiol Plant ; 176(2): e14265, 2024.
Article in English | MEDLINE | ID: mdl-38556740

ABSTRACT

Plant species distribution across ecosystems is influenced by multiple environmental factors, and recurrent seasonal stress events can act as natural selection agents for specific plant traits and limit species distribution. For that, studies aiming at understanding how environmental constraints affect adaptive mechanisms of taxonomically closely related species are of great interest. We chose two Scabiosa species inhabiting contrasting environments: the coastal scabious S. atropurpurea, typically coping with hot-dry summers in a Mediterranean climate, and the mountain scabious S. columbaria facing cold winters in an oceanic climate. A set of functional traits was examined to assess plant performance in these congeneric species from contrasting natural habitats. Both S. atropurpurea and S. columbaria appeared to be perfectly adapted to their environment in terms of adjustments in stomatal closure, CO2 assimilation rate and water use efficiency over the seasons. However, an unexpected dry period during winter followed by the typical Mediterranean hot-dry summer forced S. atropurpurea plants to deploy a set of photoprotective responses during summer. Aside from reductions in leaf water content and Fv/Fm, photoprotective molecules (carotenoids, α-tocopherol and anthocyanins) per unit of chlorophyll increased, mostly as a consequence of a severe chlorophyll loss. The profiling of stress-related hormones (ABA, salicylic acid and jasmonates) revealed associations between ABA and the bioactive jasmonoyl-isoleucine with the underlying photoprotective response to recurrent seasonal stress in S. atropurpurea. We conclude that jasmonates may be used together with ABA as a functional trait that may, at least in part, help understand plant responses to recurrent seasonal stress in the current frame of global climate change.


Subject(s)
Anthocyanins , Cyclopentanes , Ecosystem , Oxylipins , Seasons , Chlorophyll , Plant Leaves/physiology , Water
5.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658156

ABSTRACT

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Subject(s)
Acetates , Alleles , Aphids , Cyclopentanes , Sorghum , Sorghum/genetics , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Aphids/genetics , Oxylipins/pharmacology , Oxylipins/metabolism , Gene Expression Profiling , Animals , Gene Expression Regulation, Plant , Genetic Variation , Genes, myc/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/parasitology
6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612625

ABSTRACT

Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.


Subject(s)
Camellia sinensis , Cyclopentanes , Drought Resistance , Oxylipins , Isoleucine , Polyphenols/pharmacology , Camellia sinensis/genetics , Flavonoids , Tea
7.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612774

ABSTRACT

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Subject(s)
Cyclopentanes , Isoleucine/analogs & derivatives , Litchi , Oxylipins , Litchi/genetics , Hydrogen Peroxide , Embryonic Development , Polyamines , Spermidine , Putrescine , Spermine , Arginine , Cell Division , Glucosides
8.
BMC Genomics ; 25(1): 397, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654166

ABSTRACT

BACKGROUND: Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS: To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS: All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/metabolism , Binding Sites , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Genome, Plant , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
9.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612510

ABSTRACT

The ATP-dependent caseinolytic protease (Clp) system has been reported to play an important role in plant growth, development, and defense against pathogens. However, whether the Clp system is involved in plant defense against herbivores remains largely unclear. We explore the role of the Clp system in rice defenses against brown planthopper (BPH) Nilaparvata lugens by combining chemical analysis, transcriptome, and molecular analyses, as well as insect bioassays. We found the expression of a rice Clp proteolytic subunit gene, OsClpP6, was suppressed by infestation of BPH gravid females and mechanical wounding. Silencing OsClpP6 enhanced the level of BPH-induced jasmonic acid (JA), JA-isoleucine (JA-Ile), and ABA, which in turn promoted the production of BPH-elicited rice volatiles and increased the resistance of rice to BPH. Field trials showed that silencing OsClpP6 decreased the population densities of BPH and WBPH. We also observed that silencing OsClpP6 decreased chlorophyll content in rice leaves at early developmental stages and impaired rice root growth and seed setting rate. These findings demonstrate that an OsClpP6-mediated Clp system in rice was involved in plant growth-defense trade-offs by affecting the biosynthesis of defense-related signaling molecules in chloroplasts. Moreover, rice plants, after recognizing BPH infestation, can enhance rice resistance to BPH by decreasing the Clp system activity. The work might provide a new way to breed rice varieties that are resistant to herbivores.


Subject(s)
Cyclopentanes , Hemiptera , Oryza , Oxylipins , Female , Animals , ATP-Dependent Proteases , Oryza/genetics , Plant Breeding , Peptide Hydrolases , Isoleucine , Hemiptera/genetics , Adenosine Triphosphate
10.
Ecotoxicol Environ Saf ; 275: 116285, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564866

ABSTRACT

Mounting evidence has shown that the gut microbiota plays a key role in human health. The homeostasis of the gut microbiota could be affected by many factors, including environmental chemicals. Aldicarb is a carbamate insecticide used to control a variety of insects and nematode pests in agriculture. Aldicarb is highly toxic and its wide existence has become a global public health concern. In our previous study, we have demonstrated that aldicarb disturbed the gut microbial community structure and composition. However, the impacts of aldicarb on gut microbiota-derived metabolites, bile acids, remain elusive. In present study, we performed targeted metabolomics analysis to explore the effects of aldicarb exposure on bile acids, as well as steroid hormones and oxylipins in the serum, feces and liver of C57BL/6 J mice. Our results showed that aldicarb exposure disturbed the level of various bile acids, steroid hormones and oxylipins in the serum and feces of C57BL/6 J mice. In the liver, the level of cortisol was decreased, meanwhile 15,16-dihydroxyoctadeca-9,12-dienoic acid was increased in aldicarb-treated mice. Metagenomic sequencing analysis showed that the relative abundance of a bile salt hydrolase, choloylglycine hydrolase (EC:3.5.1.24) and a sulfatase enzyme involved in steroid hormone metabolism, arylsulfatase, was significantly increased by aldicarb exposure. Furthermore, correlations were found between gut microbiota and various serum metabolites. The results from this study are helpful to improve the understanding of the impact of carbamate insecticides on host and microbial metabolism.


Subject(s)
Aldicarb , Insecticides , Humans , Mice , Animals , Bile Acids and Salts , Oxylipins , Mice, Inbred C57BL , Hormones , Homeostasis
11.
Sci Rep ; 14(1): 9338, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654120

ABSTRACT

Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.


Subject(s)
Disease Resistance , Lactic Acid , Tobacco , Oxylipins , Phytophthora , Plant Diseases , Phytophthora/pathogenicity , Phytophthora/physiology , Tobacco/microbiology , Tobacco/immunology , Tobacco/genetics , Tobacco/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/prevention & control , Oxylipins/metabolism , Lactic Acid/metabolism , Cyclopentanes/metabolism , Salicylic Acid/metabolism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Signal Transduction , Hydrogen Peroxide/metabolism
12.
Planta ; 259(6): 129, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639804

ABSTRACT

MAIN CONCLUSION: IAA cooperates with JA to inhibit SA and negatively regulates rose black spot disease resistance. Black spot disease caused by the fungus Marssonina rosae is the most prevalent and severe ailment in rose cultivation, leading to the appearance of black spots on leaves and eventual leaf fall, significantly impacting the utilization of roses in gardens. Salicylic acid (SA) and jasmonic acid (JA) are pivotal hormones that collaborate with indole-3 acetic acid (IAA) in regulating plant defense responses; however, the detailed mechanisms underlying the induction of black spot disease resistance by IAA, JA, and SA remain unclear. In this study, transcript analysis was conducted on resistant (R13-54) and susceptible (R12-26) lines following M. rosae infection. In addition, the impact of exogenous interference with IAA on SA- and JA-mediated disease resistance was examined. The continuous accumulation of JA, in synergy with IAA, inhibited activation of the SA signaling pathway in the early infection stage, thereby negatively regulating the induction of effective resistance to black spot disease. IAA administration alleviated the inhibition of SA on JA to negatively regulate the resistance of susceptible strains by further enhancing the synthesis and accumulation of JA. However, IAA did not contribute to the negative regulation of black spot resistance when high levels of JA were inhibited. Virus-induced gene silencing of RcTIFY10A, an inhibitor of the JA signaling pathway, further suggested that IAA upregulation led to a decrease in disease resistance, a phenomenon not observed when the JA signal was inhibited. Collectively, these findings indicate that the IAA-mediated negative regulation of black spot disease resistance relies on activation of the JA signaling pathway.


Subject(s)
Disease Resistance , Salicylic Acid , Salicylic Acid/metabolism , Disease Resistance/genetics , Cyclopentanes/metabolism , Oxylipins/metabolism , Signal Transduction , Acetates/pharmacology , Plant Diseases/microbiology , Gene Expression Regulation, Plant
13.
BMC Genomics ; 25(1): 232, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438880

ABSTRACT

BACKGROUND: The rose is one of the most important ornamental flowers in the world for its aesthetic beauty but can be attacked by many pests such as aphids. Aphid infestation causes tremendous damage on plant tissues leading to harmed petals and leaves. Rose cultivars express different levels of resistance to aphid infestation yet the information remains unclear. Not only that, studies about the transcriptional analysis on defending mechanisms against aphids in rose are limited so far. RESULTS: In this study, the aphid resistance of 20 rose cultivars was evaluated, and they could be sorted into six levels based on the number ratio of aphids. And then, a transcriptome analysis was conducted after aphid infestation in one high resistance (R, Harmonie) and one highly susceptibility (S, Carefree Wonder) rose cultivar. In open environment the majority of rose cultivars had the highest aphid number at May 6th or May 15th in 2020 and the resistance to infestation could be classified into six levels. Differential expression analysis revealed that there were 1,626 upregulated and 767 downregulated genes in the R cultivar and 481 upregulated and 63 downregulated genes in the S cultivar after aphid infestation. Pathway enrichment analysis of the differentially expressed genes revealed that upregulated genes in R and S cultivars were both enriched in defense response, biosynthesis of secondary metabolites (phenylpropanoid, alkaloid, and flavonoid), carbohydrate metabolism (galactose, starch, and sucrose metabolism) and lipid processing (alpha-linolenic acid and linolenic acid metabolism) pathways. In the jasmonic acid metabolic pathway, linoleate 13S-lipoxygenase was specifically upregulated in the R cultivar, while genes encoding other crucial enzymes, allene oxide synthase, allene oxide cyclase, and 12-oxophytodienoate reductase were upregulated in both cultivars. Transcription factor analysis and transcription factor binding search showed that WRKY transcription factors play a pivotal role during aphid infestation in the R cultivar. CONCLUSIONS: Our study indicated the potential roles of jasmonic acid metabolism and WRKY transcription factors during aphid resistance in rose, providing clues for future research.


Subject(s)
Aphids , Oxylipins , Animals , Gene Expression Profiling , Cyclopentanes , Transcription Factors
14.
Physiol Plant ; 176(2): e14250, 2024.
Article in English | MEDLINE | ID: mdl-38467566

ABSTRACT

The necrotrophic fungus Seiridium cardinale is the main responsible for Cypress Canker Disease (CCD), a pandemic affecting many Cupressaceae worldwide. The present study aims to elucidate the signalling of the early responses in the bark and foliage of CCD-susceptible and -resistant C. sempervirens clones to S. cardinale inoculation (SI and RI, respectively). In the bark of SI, a peaking production of ethylene (Et) and jasmonic acid (JA) occurred at 3 and 4 days post inoculation (dpi), respectively, suggesting an attempted plant response to the pathogen. A response that, however, was ineffective, as confirmed by the severe accumulation of malondialdehyde by-products at 13 dpi (i.e., lipid peroxidation). Differently, Et emission peaked in RI bark at 3 and 13 dpi, whereas abscisic acid (ABA) accumulated at 1, 4 and 13 dpi, resulting in a lower MDA accumulation (and unchanged levels of antioxidant capacity). In the foliage of SI, Et was produced at 1 and 9 dpi, whereas JA and salicylic acid (SA) accumulated at 1 and 3 dpi. Conversely, an increase of ABA and SA occurred at 1 dpi in the RI foliage. This outcome indicates that some of the observed metabolic alterations, mainly occurring as local defence mechanisms, might be able to gradually shift to a systemic resistance, although an accumulation of MDA was observed in both SI and RI foliage (but with an increased antioxidant capacity reported only in the resistant clone). We believe that the results reported here will be useful for the selection of clones able to limit the spread and damage of CCD.


Subject(s)
Ascomycota , Cupressus , Ethylenes , Cupressus/metabolism , Cupressus/microbiology , Antioxidants , Plant Bark/metabolism , Abscisic Acid/metabolism , Salicylic Acid/metabolism , Plant Diseases/microbiology , Cyclopentanes/metabolism , Oxylipins/metabolism
15.
Theor Appl Genet ; 137(3): 72, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446239

ABSTRACT

KEY MESSAGE: SbMYC2 functions as a key regulator under JA signaling in enhancing drought tolerance of sorghum through direct activating SbGR1. Drought stress is one of the major threats to crop yield. In response to drought stress, functions of basic helix-loop-helix (bHLH) transcription factors (TFs) have been reported in Arabidopsis and rice, but little is known for sorghum. Here, we characterized the function of SbMYC2, a bHLH TF in sorghum, and found that SbMYC2 responded most significantly to PEG-simulated drought stress and JA treatments. Overexpression of SbMYC2 significantly enhanced drought tolerance in Arabidopsis, rice and sorghum. In addition, it reduced reactive oxygen species (ROS) accumulation and increased chlorophyll content in sorghum leaves. While silencing SbMYC2 by virus-induced gene silencing (VIGS) resulted in compromised drought tolerance of sorghum seedlings. Moreover, SbMYC2 can directly activate the expression of GLUTATHIONE-DISULFIDE REDUCTASE gene SbGR1. SbGR1 silencing led to significantly weakened drought tolerance of sorghum, and higher ROS accumulation and lower chlorophyll content in sorghum leaves were detected. In addition, SbMYC2 can interact with SbJAZs, suppressors of JA signaling, and thus can mediate JA signaling to activate SbGR1, thereby regulating sorghum's tolerance to drought stress. Overall, our findings demonstrate that bHLH TF SbMYC2 plays an important role in sorghum's response to drought stress, thus providing one theoretical basis for genetic enhancement of sorghum and even rice.


Subject(s)
Arabidopsis , Cyclopentanes , Oryza , Oxylipins , Sorghum , Drought Resistance , Sorghum/genetics , Reactive Oxygen Species , Basic Helix-Loop-Helix Transcription Factors/genetics , Chlorophyll , Edible Grain , Oryza/genetics
16.
J Plant Physiol ; 296: 154225, 2024 May.
Article in English | MEDLINE | ID: mdl-38522214

ABSTRACT

Local damaging stimuli cause a rapid increase in the content of the defense phytohormone jasmonic acid (JA) and its biologically active derivative jasmonoyl-L-isoleucine (JA-Ile) in undamaged distal tissues. The increase in JA and JA-Ile levels was coincident with a rapid decrease in the levels of the precursor 12-oxo-phytodienoic acid (OPDA). The propagation of a stimulus-induced long-distance electrical signal, variation potential (VP), which is accompanied by intracellular changes in pH and Ca2+ levels, preceded systemic changes in jasmonate content. The decrease in pH during VP, mediated by transient inactivation of the plasma membrane H+-ATPase, induced the conversion of OPDA to JA, probably by regulating the availability of the OPDA substrate to JA biosynthetic enzymes. The regulation of systemic synthesis of JA and JA-Ile by the Ca2+ wave accompanying VP most likely occurs by the same mechanism of pH-induced conversion of OPDA to JA due to Ca2+-mediated decrease in pH as a result of H+-ATPase inactivation. Thus, the transient increase in intracellular Ca2+ levels and the transient decrease in intracellular pH are most likely the key mechanisms of VP-mediated regulation of jasmonate production in systemic tissues upon local stimulation.


Subject(s)
Arabidopsis , Diazonium Compounds , Isoleucine/analogs & derivatives , Pyridines , Arabidopsis/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Isoleucine/metabolism , Proton-Translocating ATPases/metabolism , Hydrogen-Ion Concentration
17.
Int J Biol Macromol ; 265(Pt 2): 131017, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513909

ABSTRACT

Water dropwort is favored by consumers for its unique flavor and medicinal value. Terpenoids were identified as the main volatile compounds related to its flavor. In this study, water dropwort was treated with different concentrations of exogenous methyl jasmonate (MeJA). The contents of volatile terpenoids were determined under various MeJA treatments. The results indicated that 0.1 mM of MeJA most effectively promoted the biosynthesis of flavor-related terpenoids in water dropwort. Terpinolene accounted the highest proportion among terpene compounds in water dropwort. The contents of jasmonates in water dropwort were also increased after exogenous MeJA treatments. Transcriptome analysis indicated that DEGs involved in the terpenoid biosynthesis pathway were upregulated. The TPS family was identified from water dropwort, and the expression levels of Oj0473630, Oj0287510 and Oj0240400 genes in TPS-b subfamily were consistent with the changes of terpene contents under MeJA treatments. Oj0473630 was cloned from the water dropwort and designated as OjTPS3, which is predicted to be related to the biosynthesis of terpinolene in water dropwort. Subcellular localization indicated that OjTPS3 protein was localized in chloroplast. Protein purification and enzyme activity of OjTPS3 protein were conducted. The results showed that the purified OjTPS3 protein catalyzed the biosynthesis of terpinolene by using geranyl diphosphate (GPP) as substrate in vitro. This study will facilitate to further understand the molecular mechanism of terpenoid biosynthesis and provide a strategy to improve the flavor of water dropwort.


Subject(s)
Cyclopentanes , Oenanthe , Oxylipins , Terpenes , Terpenes/metabolism , Oenanthe/metabolism , Cyclohexane Monoterpenes , Acetates/pharmacology
18.
J Plant Physiol ; 296: 154218, 2024 May.
Article in English | MEDLINE | ID: mdl-38490054

ABSTRACT

Jasmonates (JAs) are among the main phytohormones, regulating plant growth and development, stress responses, and secondary metabolism. As the major regulator of the JA signaling pathway, MYC2 also plays an important role in plant secondary metabolite synthesis and accumulation. In this study, we performed a comparative transcriptome analysis of Lycoris aurea seedlings subjected to methyl jasmonate (MeJA) at different treatment times. A total of 31,193 differentially expressed genes (DEGs) were identified by RNA sequencing. Among them, 732 differentially expressed transcription factors (TFs) comprising 51 TF families were characterized. The most abundant TF family was WRKY proteins (80), followed by AP2/ERF-EFR (67), MYB (59), bHLH (52), and NAC protein (49) families. Subsequently, by calculating the Pearson's correlation coefficient (PCC) between the expression level of TF DEGs and the lycorine contents, 41 potential TF genes (|PCC| >0.8) involved in lycorine accumulation were identified, including 36 positive regulators and 5 negative regulators. Moreover, a MeJA-inducible MYC2 gene (namely LaMYC2) was cloned on the basis of transcriptome sequencing. Bioinformatic analyses revealed that LaMYC2 proteins contain the bHLH-MYC_N domain and bHLH-AtAIB_like motif. LaMYC2 protein is localized in the cell nucleus, and can partly rescue the MYC2 mutant in Arabidopsis thaliana. LaMYC2 protein could interact with most LaJAZs (especially LaJAZ3 and LaJAZ4) identified previously. Transient overexpression of LaMYC2 increased lycorine contents in L. aurea petals, which might be associated with the activation of the transcript levels of tyrosine decarboxylase (TYDC) and phenylalanine ammonia lyase (PAL) genes. By isolating the 887-bp-length promoter fragment upstream of the start codon (ATG) of LaTYDC, we found several different types of E-box motifs (CANNTG) in the promoter of LaTYDC. Further study demonstrated that LaMYC2 was indeed able to bind the E-box (CACATG) present in the LaTYDC promoter, verifying that the pathway genes involved in lycorine biosynthesis could be regulated by LaMYC2, and that LaMYC2 has positive roles in the regulation of lycorine biosynthesis. These findings demonstrate that LaMYC2 is a positive regulator of lycorine biosynthesis and may facilitate further functional research of the LaMYC2 gene, especially its potential regulatory roles in Amaryllidaceae alkaloid accumulation in L. aurea.


Subject(s)
Acetates , Amaryllidaceae Alkaloids , Arabidopsis , Lycoris , Phenanthridines , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Amaryllidaceae Alkaloids/metabolism , Lycoris/genetics , Lycoris/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Transcriptome , Arabidopsis/genetics , Gene Expression Regulation, Plant
19.
Plant Physiol Biochem ; 209: 108533, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520967

ABSTRACT

Selenium (Se) toxicity is an emerging contaminant of global concern. It is known to cause oxidative stress, affecting plant growth and yield. Plantago ovata, a major cash crop known for its medicinal properties, is often cultivated in Se-contaminated soil. Thus, the aim of this study was to evaluate the use of methyl jasmonate (MeJA) seed priming technique to mitigate Se-induced phytotoxicity. The results demonstrated that Se stress inhibited P. ovata growth, biomass and lowered chlorophyll content in a dose-dependent manner. Treatment with 1 µM MeJA enhanced the antioxidant defence system via ROS signalling and upregulated key enzymes of phenylpropanoid pathway, PAL (1.9 times) and CHI (5.4 times) in comparison to control. Caffeic acid, Vanillic acid, Chlorogenic acid, Coumaric acid and Luteoloside were the most abundant polyphenols. Enzymatic antioxidants involved in ROS scavenging, such as CAT (up to 1.3 times) and GPOX (up to 1.4 times) were raised, while SOD (by 0.6 times) was reduced. There was an upregulation of growth-inducible hormones, IAA (up to 2.1 fold) and GA (up to 1.5 fold) whereas, the stress-responsive hormones ABA (by 0.6 fold) and SA (by 0.5 fold) were downregulated. The alleviation of Se toxicity was also evident from the decrease in H2O2 and MDA contents under MeJA treatment. These findings suggest that MeJA can effectively improve Se tolerance and nutraceutical value in P. ovata by modulating the phytohormone regulatory network, redox homeostasis and elicits accumulation of polyphenols. Therefore, MeJA seed priming could be an efficient way to enhance stress resilience and sustainable crop production.


Subject(s)
Acetates , Cyclopentanes , Oxylipins , Plantago , Selenium , Selenium/pharmacology , Selenium/metabolism , Reactive Oxygen Species/metabolism , Plantago/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Polyphenols/metabolism , Hormones/metabolism
20.
Genes (Basel) ; 15(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38540383

ABSTRACT

Many monoterpenoid indole alkaloids (MIAs) produced in Catharanthus roseus have demonstrated biological activities and clinical potential. However, their complex biosynthesis pathway in plants leads to low accumulation, limiting therapeutic applications. Efforts to elucidate the MIA biosynthetic regulatory mechanism have focused on improving accumulation levels. Previous studies revealed that jasmonic acid (JA), an important plant hormone, effectively promotes MIA accumulation by inducing the expression of MIA biosynthesis and transport genes. Nevertheless, excessive JA signaling can strongly inhibit plant growth, decreasing MIA productivity in C. roseus. Therefore, identifying key components balancing growth and MIA production in the JA signaling pathway is imperative for effective pharmaceutical production. Here, we identify a homolog of the jasmonate transporter 1, CrJAT1, through co-expression and phylogenetic analyses. Further investigation demonstrated that CrJAT1 can activate JA signaling to promote MIA accumulation without compromising growth. The potential role of CrJAT1 in redistributing intra/inter-cellular JA and JA-Ile may calibrate signaling to avoid inhibition, representing a promising molecular breeding target in C. roseus to optimize the balance between growth and specialized metabolism for improved MIA production.


Subject(s)
Catharanthus , Cyclopentanes , Oxylipins , Secologanin Tryptamine Alkaloids , Monoterpenes/metabolism , Catharanthus/genetics , Catharanthus/metabolism , Phylogeny , Plant Breeding , Secologanin Tryptamine Alkaloids/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...